87 research outputs found

    Caracterización genética de la población bovina guabalá mediante microsatélites

    Get PDF
    In the present work, a Guabala Creole cattle was characterized by a twenty-seven microsatellite panel, selected from a recommendation of FAO/ISAG. Samples of DNA were obtained from the Guabala Creole cattle population in the occidental region of the Republic of Panama and the Anton Valley, places where we found pure animals of this population. From each microsatellite, the polymorphic information content (PIC), mean number of alleles (Na), observed heterozygosity (Ho), expected heterozygosity (He), Fis statistic and the exact test for Hardy-Weinberg equilibrium (HWE) were calculated. The results found were: PIC: 0.6044; Na: 5.63; He: 0.6458; Ho: 0.6265; Fis: 0.0504. Nine microsatellites were in disequilibria (p<0.05). The results are considered in the same range that those obtained in Spanish native populations, this result, can lead to other detailed studies of this population and the relationship with other bovine's populations.Se caracterizó la población bovina Guabalá con un panel de 27 microsatélites seleccionados a partir de las recomendaciones de la FAO/ISAG (Food and Agriculture Organization/International Society of Animal Genetics) para estudios de biodiversidad genética bovina (FAO, 2004). Se analizaron muestras de ADN obtenidas de las poblaciones bovinas criollas Guabalá en la región Occidental de la República de Panamá y en la región del Valle de Antón, sitios donde se han ubicado ejemplares puros. La amplificación se realizó mediante la reacción en cadena de la polimerasa (PCR). La electroforesis se llevó a cabo mediante un secuenciador automático ABI PRISM 377 XL. La tipificación alélica se realizó con los paquetes informáticos Genescan v.3.2.3 y Genotyper v.3.7. Para cada microsatélite se calculó el contenido de información polimórfica (PIC), el número medio de alelos (Na), la heterocigosis observada (Ho), la heterocigosis esperada (He), el estadístico Fis, y equilibrio Hardy-Weinberg (HWE). Los valores obtenidos fueron: PIC: 0,6044; Na: 5,63; He: 0,6458; Ho: 0,6265; Fis: 0,0504. Se observó que 9 microsatélites estaban en desequilibrio (p<0,05). Los valores se pueden considerar similares a los encontrados en otras poblaciones bovinas autóctonas españolas y permitirán realizar estudios minuciosos y analizar las relaciones de esta población con otras poblaciones bovinas

    Microbial community and volatilome changes in brines along the spontaneous fermentation of Spanish-style and natural-style green table olives (Manzanilla cultivar)

    Get PDF
    9 Páginas.-- 5 Figuras.-- 1 TablaMicrobial community and volatilome of brines were monitored during the spontaneous fermentations of Spanish-style and Natural-style green table olives from Manzanilla cultivar. Fermentation of olives in the Spanish style was carried out by lactic acid bacteria (LAB) and yeasts, whereas halophilic Gram-negative bacteria and archaea, along with yeasts, drove the fermentation in the Natural style. Clear differences between the two olive fermentations regarding physicochemical and biochemical features were found. Lactobacillus, Pichia, and Saccharomyces were the dominant microbial communities in the Spanish style, whereas Allidiomarina, Halomonas, Saccharomyces, Pichia, and Nakazawaea predominated in the Natural style. Numerous qualitative and quantitative differences in individual volatiles between both fermentations were found. The final products mainly differed in total amounts of volatile acids and carbonyl compounds. In addition, in each olive style, strong positive correlations were found between the dominant microbial communities and various volatile compounds, some of them previously reported as aroma-active compounds in table olives. The findings from this study provide a better understanding of each fermentation process and may help the development of controlled fermentations using starter cultures of bacteria and/or yeasts for the production of high-quality green table olives from Manzanilla cultivar.This work was funded by the Junta de Andalucia (project P20-00071) and the Spanish Government (grant number PID2020-116314RB-I00). These projects included European Regional Development Funds (ERDF).Peer reviewe

    Genetic structure, relationships and admixture with wild relatives in native pig breeds from Iberia and its islands

    Get PDF
    Articles in International JournalsBackground: Native pig breeds in the Iberian Peninsula are broadly classified as belonging to either the Celtic or the Mediterranean breed groups, but there are other local populations that do not fit into any of these groups. Most of the native pig breeds in Iberia are in danger of extinction, and the assessment of their genetic diversity and population structure, relationships and possible admixture between breeds, and the appraisal of conservation alternatives are crucial to adopt appropriate management strategies. Methods: A panel of 24 microsatellite markers was used to genotype 844 animals representing the 17 most important native swine breeds and wild populations existing in Portugal and Spain and various statistical tools were applied to analyze the results. Results: Genetic diversity was high in the breeds studied, with an overall mean of 13.6 alleles per locus and an average expected heterozygosity of 0.80. Signs of genetic bottlenecks were observed in breeds with a small census size, and population substructure was present in some of the breeds with larger census sizes. Variability among breeds accounted for about 20% of the total genetic diversity, and was explained mostly by differences among the Celtic, Mediterranean and Basque breed groups, rather than by differences between domestic and wild pigs. Breeds clustered closely according to group, and proximity was detected between wild pigs and the Mediterranean cluster of breeds. Most breeds had their own structure and identity, with very little evidence of admixture, except for the Retinto and Entrepelado varieties of the Mediterranean group, which are very similar. Genetic influence of the identified breed clusters extends beyond the specific geographical areas across borders throughout the Iberian Peninsula, with a very sharp transition from one breed group to another. Analysis of conservation priorities confirms that the ranking of a breed for conservation depends on the emphasis placed on its contribution to the betweenand within-breed components of genetic diversity. Conclusions: Native pig breeds in Iberia reveal high levels of genetic diversity, a solid breed structure and a clear organization in well-defined clusters

    The genetic ancestry of American Creole cattle inferred from uniparental and autosomal genetic markers

    Get PDF
    Cattle imported from the Iberian Peninsula spread throughout America in the early years of discovery and colonization to originate Creole breeds, which adapted to a wide diversity of environments and later received influences from other origins, including zebu cattle in more recent years. We analyzed uniparental genetic markers and autosomal microsatellites in DNA samples from 114 cattle breeds distributed worldwide, including 40 Creole breeds representing the whole American continent, and samples from the Iberian Peninsula, British islands, Continental Europe, Africa and American zebu. We show that Creole breeds differ considerably from each other, and most have their own identity or group with others from neighboring regions. Results with mtDNA indicate that T1c-lineages are rare in Iberia but common in Africa and are well represented in Creoles from Brazil and Colombia, lending support to a direct African influence on Creoles. This is reinforced by the sharing of a unique Y-haplotype between cattle from Mozambique and Creoles from Argentina. Autosomal microsatellites indicate that Creoles occupy an intermediate position between African and European breeds, and some Creoles show a clear Iberian signature. Our results confirm the mixed ancestry of American Creole cattle and the role that African cattle have played in their development.Fil: Ginja, Catarina. Universidad de Porto. Facultad de Ciências. Centro de Investigação em Biodiversidade e Recursos Genéticos; PortugalFil: Gama, Luis Telo. Universidade de Lisboa. Faculdade de Medicina Veterinaria; PortugalFil: Cortés, Oscar. Universidad Complutense de Madrid; EspañaFil: Martin Burriel, Inmaculada. Universidad de Zaragoza; EspañaFil: Vega Pla, Jose Luis. Servicio de Cría Caballar de las Fuerzas Armadas. Laboratorio de Investigación Aplicada; EspañaFil: Penedo, Cecilia. University of California; Estados UnidosFil: Sponenberg, Phil. Virginia-Maryland Regional College of Veterinary Medicine; Estados UnidosFil: Cañón Ferreras, Francisco Javier. Universidad Complutense de Madrid; EspañaFil: Sanz, Arianne. Universidad de Zaragoza; EspañaFil: Egito, Andrea Alves do. Embrapa Gado de Corte; BrasilFil: Alvares, Luz Angela. Universidad Nacional de Colombia; ColombiaFil: Giovambattista, Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET- La Plata. Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout". Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria; ArgentinaFil: Agha, Saif. Ain Shams University. Faculty of Agriculture, Animal Production Department; EgiptoFil: Rogberg Muñoz, Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET- La Plata. Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout". Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria; ArgentinaFil: Cassiano Lara, Maria Aparecida. Centro de Genética e Reprodução. Instituto de Zootecnia; BrasilFil: Delgado, Juan Vicente. Universidad de Córdoba; EspañaFil: Martinez, Amparo. Universidad de Córdoba; Españ

    Relationships between Panamanians and some creole cattle landraces in Latin America

    Get PDF
    El objetivo de este trabajo fue establecer la relación genética entre poblaciones bovinas panameñas Guabalá y Guaymí y algunas poblaciones criollas de Latinoamérica. Se practicó un análisis factorial de correspondencias, análisis de varianza molecular, distancias genéticas, número medio de migrantes por población y los estadísticos F de Wright. Se evaluó la estructura de la población mediante un modelo Bayesiano, suponiéndose un número desconocido de K grupos diferentes genéticamente. El análisis factorial de correspondencias mostró que las poblaciones Guabalá y Guaymí se agrupan con los bovinos criollos mexicanos y el Texas Longhorn. Igualmente se observó menor diferenciación genética de las criollas panameñas con mexicanos y el Texas Longhorn. Los análisis de distancia genética también mostraron dados similares a los obtenidos por el Amova y por el análisis factorial de correspondencia, y se observó menor distancia entre poblaciones del norte y las panameñas, en comparación con las poblaciones del sur. La agrupación bayesiana permitió la asignación de los individuos a su respectivo grupo, con base en su semejanza genética, y proporcionó información acerca del número de poblaciones bajo el cual se originan. Hay una estrecha relación histórica, genética y geográfica de las poblaciones panameñas, criollas mexicanas y Texas Longhorn, a partir de las migraciones de sus precursores desde las Antillas hacia Panamá y México.El objetivo de este trabajo fue establecer la relación genética entre poblaciones bovinas panameñas Guabalá y Guaymí y algunas poblaciones criollas de Latinoamérica. Se practicó un análisis factorial de correspondencias, análisis de varianza molecular, distancias genéticas, número medio de migrantes por población y los estadísticos F de Wright. Se evaluó la estructura de la población mediante un modelo Bayesiano, suponiéndose un número desconocido de K grupos diferentes genéticamente. El análisis factorial de correspondencias mostró que las poblaciones Guabalá y Guaymí se agrupan con los bovinos criollos mexicanos y el Texas Longhorn. Igualmente se observó menor diferenciación genética de las criollas panameñas con mexicanos y el Texas Longhorn. Los análisis de distancia genética también mostraron dados similares a los obtenidos por el Amova y por el análisis factorial de correspondencia, y se observó menor distancia entre poblaciones del norte y las panameñas, en comparación con las poblaciones del sur. La agrupación bayesiana permitió la asignación de los individuos a su respectivo grupo, con base en su semejanza genética, y proporcionó información acerca del número de poblaciones bajo el cual se originan. Hay una estrecha relación histórica, genética y geográfica de las poblaciones panameñas, criollas mexicanas y Texas Longhorn, a partir de las migraciones de sus precursores desde las Antillas hacia Panamá y México.The objective of this work was to establish the genetic relationship between Guabalá and Guaymi cattle populations and some native ones of Latin America. Factorial correspondence analysis, analysis of molecular variance, genetic distances, average number of migrants per population and Wright’s F statistics were performed. Population structure was assessed by a Bayesian model, assuming an unknown number of K genetically distinct groups. The correspondence analysis showed that the populations of Guabalá and Guaymí cluster with Mexican creole cattle and Texas Longhorn. Lower genetic differentiation of Panamanian creole with Mexican and Texas Longhorn was also observed. The analyses of genetic distances have also shown similar results to those obtained by Amova and by the factorial correspondence analysis, and the less distance was observed between north populations and Panamanian ones, in comparison with southern populations. Bayesian clustering permitted the assignment of individuals to their respective groups, based on their genetic similarity, and provided information on the number of cluster from which they originate. There is a close historical, genetic, and geographic relationship of Panamanian, Mexican, and Texas Longhorn populations due to the migration of precursors from the Caribbean islands to Panama and Mexico

    The genetic ancestry of American Creole cattle inferred from uniparental and autosomal genetic markers

    Get PDF
    Cattle imported from the Iberian Peninsula spread throughout America in the early years of discovery and colonization to originate Creole breeds, which adapted to a wide diversity of environments and later received influences from other origins, including zebu cattle in more recent years. We analyzed uniparental genetic markers and autosomal microsatellites in DNA samples from 114 cattle breeds distributed worldwide, including 40 Creole breeds representing the whole American continent, and samples from the Iberian Peninsula, British islands, Continental Europe, Africa and American zebu. We show that Creole breeds differ considerably from each other, and most have their own identity or group with others from neighboring regions. Results with mtDNA indicate that T1c-lineages are rare in Iberia but common in Africa and are well represented in Creoles from Brazil and Colombia, lending support to a direct African influence on Creoles. This is reinforced by the sharing of a unique Y-haplotype between cattle from Mozambique and Creoles from Argentina. Autosomal microsatellites indicate that Creoles occupy an intermediate position between African and European breeds, and some Creoles show a clear Iberian signature. Our results confirm the mixed ancestry of American Creole cattle and the role that African cattle have played in their development.Fil: Ginja, Catarina. Universidad de Porto. Facultad de Ciências. Centro de Investigação em Biodiversidade e Recursos Genéticos; PortugalFil: Gama, Luis Telo. Universidade de Lisboa. Faculdade de Medicina Veterinaria; PortugalFil: Cortés, Oscar. Universidad Complutense de Madrid; EspañaFil: Martin Burriel, Inmaculada. Universidad de Zaragoza; EspañaFil: Vega Pla, Jose Luis. Servicio de Cría Caballar de las Fuerzas Armadas. Laboratorio de Investigación Aplicada; EspañaFil: Penedo, Cecilia. University of California; Estados UnidosFil: Sponenberg, Phil. Virginia-Maryland Regional College of Veterinary Medicine; Estados UnidosFil: Cañón Ferreras, Francisco Javier. Universidad Complutense de Madrid; EspañaFil: Sanz, Arianne. Universidad de Zaragoza; EspañaFil: Egito, Andrea Alves do. Embrapa Gado de Corte; BrasilFil: Alvares, Luz Angela. Universidad Nacional de Colombia; ColombiaFil: Giovambattista, Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET- La Plata. Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout". Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria; ArgentinaFil: Agha, Saif. Ain Shams University. Faculty of Agriculture, Animal Production Department; EgiptoFil: Rogberg Muñoz, Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET- La Plata. Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout". Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria; ArgentinaFil: Cassiano Lara, Maria Aparecida. Centro de Genética e Reprodução. Instituto de Zootecnia; BrasilFil: Delgado, Juan Vicente. Universidad de Córdoba; EspañaFil: Martinez, Amparo. Universidad de Córdoba; Españ
    corecore